System Identification of Multistage Turbine Engine Rotors

Author:

Song Sang Heon1,Castanier Matthew P.1,Pierre Christophe2

Affiliation:

1. University of Michigan, Ann Arbor, MI

2. McGill University, Montre´al, QC, Canada

Abstract

Recently, an efficient approach for modeling the vibration of multistage rotors was developed by the authors [1, 2]. This reduced-order modeling technique employs component mode synthesis, with each stage (bladed disk) treated as a separate component. In addition, the component mode mistuning (CMM) projection technique was extended to multistage systems. In the CMM method, individual blade mistuning is transformed from a basis of cantilevered blade modes to the basis of tuned system modes used for the reduced-order model. In this paper, the component-based modeling framework developed for mistuned multistage turbine engine rotors is utilized for system identification. First, the identification of multistage mode types is considered. Strain energy ratios are used to identify which system modes are confined to mostly one stage and which modes show strong coupling among multiple stages. Simple approximations for these ratios are derived based on data from the component-level free response analysis that are performed during the model construction process. The component-level results are also utilized to identify the dominant nodal diameter number for each multistage mode, even though the multistage system does not possess cyclic symmetry because the stages have different numbers of blades. Second, the modes are further classified as to how much the blades participate in the response relative to the disk for each stage. As a systematic identification procedure, this is applicable to single-stage models as well. For multistage systems, this is used to determine operating conditions where coupled response among blades on adjacent stages is most likely to occur. Third, the application of mistuning identification techniques to multistage systems is considered. It is found that the proposed modal classification methods allow the determination of conditions under which deviations in individual blade properties may be observed indirectly from measurements of the disks and spacer.

Publisher

ASMEDC

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parametric Reduced Order Models for Bladed Disks With Mistuning and Varying Operational Speed;Journal of Engineering for Gas Turbines and Power;2019-03-08

2. A High Efficient Fluid-Structure Interaction Method for Flutter Analysis of Mistuned;Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University;2018-10

3. Multistage Blisk and Large Mistuning Modeling Using Fourier Constraint Modes and PRIME;Journal of Engineering for Gas Turbines and Power;2018-04-10

4. Experimental modal identification of mistuning in an academic two-stage drum;Mechanical Systems and Signal Processing;2017-05

5. Effects of different coupling models of a helical gear system on vibration characteristics;Journal of Mechanical Science and Technology;2017-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3