The Self-Induced Unsteadiness of Tip Leakage Vortex and Its Effect on Compressor Stall Inception

Author:

Tong Zhiting1,Lin Feng2,Chen Jingyi1,Nie Chaoqun1

Affiliation:

1. Chinese Academy of Sciences, Beijing, China

2. Tri-State University, Angola, IN

Abstract

The self-induced unsteadiness of tip leakage vortex (TLV), which appears in a compressor rotor working in a range of operating points on its characteristics, from wide-open throttle all the way to the stall limit, is investigated experimentally. The research aims are twofold, to clarify the three modes in TLV development process through experimental evidences and to explore the effect of this in-blade TLV unsteadiness on stall inception. In the first half of the paper, in order to detect the unsteadiness and ensure its existence in the experimental environment (not just in computational results), phase-locked Mean and Root-Mean-Square (RMS) contours are used to track the time-averaged trajectories of the TLV, while a power spectral density (PSD) analysis provides a means to identify the magnitude and the frequency of the oscillation. With all of the above, the three modes of the TLV development, which are steady, in-blade unsteady and cross-blade unsteady TLV, can be clearly demonstrated. In the second half of this paper, various tip jet injections are applied to test the effects of the unsteady TLV on stall inception. It is found that a spike stall precursor is originated from circumferential locations where the strongest unsteady TLV are. At those locations, tip jet injections that are designated to directly alter the characteristics of TLV improve the stall margin effectively. Further, the injections are arranged over the rotor tip in difference axial locations and switched on at different points of compressor characteristic, demonstrating that if the injection misses the tip vortices or interferes with TLV too late, little or even no improvement in stall margin can be gained. These results show that the unsteady TLV are closely related to spike stall inception in this single rotor, which implies that the initiation of compressor stall could be manipulated by properly altering the characteristics of TLV unsteadiness.

Publisher

ASMEDC

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3