Sealing Technology: Rub Test Rig for Abrasive/Abradable Systems

Author:

Rathmann Ulrich1,Olmes Sven1,Simeon Alex2

Affiliation:

1. ALSTOM (Switzerland), Ltd., Baden, Switzerland

2. University of Applied Sciences – Rapperswil, Rapperswil, Switzerland

Abstract

Performance and efficiency optimization is one of the major tasks in the turbo machinery industry. Therefore efforts for scientific and technical improvements focus on optimization and reduction of losses. Secondary losses are of major interest because of their parasitic character related to stage efficiency and power output. One of these losses is over tip leakage of blades. Common practice is a minimization of this clearance with abrasive/abradable combinations. With this technique the blade tip (abrasive material) can rub into its counterpart (heat-shield, abradable material on casings or liners) and therefore minimize the operating tip-clearance. This technology is well established in compressor and turbine engineering since many years [1]. Field experience shows that abrasive/abradable systems do not always work as intended. In some cases rubbing conditions are reversed so that the intended abradable cuts into the abrasive. Any benefit on operating tip-clearance will then be minor at best or even negative. Rubbing behavior is difficult to predict, especially for new materials or geometries where no experience is available. In close cooperation with the University of Applied Sciences Rapperswil (Switzerland), ALSTOM has developed a test rig that allows simulating engine-operating conditions and therefore evaluate abrasive/abradable combinations before actual implementation into an engine. The rig is designed to reproduce circumferential velocities and incursion rates that are typical for gas turbine engines in the compressor as well as in the turbine. Forces and temperatures are measured as quantitative data, visual appearance and metallographic condition of test specimens are recorded as qualitative data that allow a more detailed assessment of material combinations and operating conditions. This paper describes the design of a high-speed wear rig facility to test single blade and fully shrouded rub configurations. In addition the validation of the test rig against real engine experience and knowledge is shown.

Publisher

ASMEDC

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3