Fundamental Impact of Firing Syngas in Gas Turbines

Author:

Oluyede Emmanuel O.1,Phillips Jeffrey N.2

Affiliation:

1. University of Pittsburgh, Pittsburg, PA

2. Electric Power Research Institute, Charlotte, NC

Abstract

This paper addresses the impact of burning syngas in a large size, heavy-duty gas turbine designed to run on natural gas while maintaining hot section life. The process used to produce syngas is not discussed here; we mainly focus on analyzing the issues related to switching from natural gas to syngas on the gas turbine hot sections and the possibility of reducing the firing temperature in order to maintain the durability of the hot metal section life. The analysis indicate that the power output for a syngas-fired turbine plant could be increased as much as 20–25% when compared with the same turbine fired at the same metal temperature as the natural gas, however this increase in power output is also accompanied by an increase in the moisture content of the combustion products due largely to higher hydrogen content in the syngas and the increased turbine flow which contribute significantly to the overheating of turbine component parts. Correlations based on the hydrogen content as well as the lower heating value of the fuels were obtained in order to determine specific firing temperature reduction necessary to obtain durable metal temperature.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3