Development of Engine Intake Anti-Icing Systems for LCAC

Author:

Dvornak Michael1

Affiliation:

1. NAVSSES, Philadelphia, PA

Abstract

US Navy ships operating in cold weather require the protection of an engine intake air anti-ice system to prevent blockage of combustion airflow during snow and icing conditions. This requirement does not present any unusual design demands on large displacement type ships because there is more available space, an abundance of usable thermal energy, and lastly their design allows engine weather intakes to be placed in relatively protected locations. However on small craft such as the Navy’s Landing Craft Air Cushion (LCAC), intake air anti-icing presents a unique design challenge. This is due to the spray generated by venting of the craft’s pressurized air cushion during normal over-water operations that results in significant carry-over of this spray onto the cargo deck, from which it is subsequently ingested into the engine intakes. LCAC is also powered by gas turbines that require large quantities of inlet combustion air for power generation. Because of these considerations the thermal energy required for intake anti-icing on LCAC are significantly higher than for large displacement type ships. Adding to this challenge are the facts that on-board space in an air cushion vehicle is at a premium, and power for thermal energy must be obtained from existing sources whose primary function is other than anti-icing. This paper will trace the development and evolution of LCAC’s engine intake anti-ice systems from the craft’s initial design, through to the present systems used in the fleet. It will present the tradeoff issues that effected selection of the anti-ice systems, such as energy availability, cold weather criteria, and craft design constraints.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3