A Robust Asymptotically Based Modeling Approach for Two-Phase Flow in Porous Media

Author:

Awad M. M.1,Butt S. D.1

Affiliation:

1. Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NF, A1B 3X5, Canada

Abstract

A simple semitheoretical method for calculating the two-phase frictional pressure gradient in porous media using asymptotic analysis is presented. The two-phase frictional pressure gradient is expressed in terms of the asymptotic single-phase frictional pressure gradients for liquid and gas flowing alone. In the present model, the two-phase frictional pressure gradient for x≅0 is nearly identical to the single-phase liquid frictional pressure gradient. Also, the two-phase frictional pressure gradient for x≅1 is nearly identical to the single-phase gas frictional pressure gradient. The proposed model can be transformed into either a two-phase frictional multiplier for liquid flowing alone (ϕl2) or a two-phase frictional multiplier for gas flowing alone (ϕg2) as a function of the Lockhart–Martinelli parameter X. The advantage of the new model is that it has only one fitting parameter (p), while the other existing correlations, such as the correlation of Larkins et al., Sato et al., and Goto and Gaspillo, have three constants. Therefore, calibration of the new model to the experimental data is greatly simplified. The new model is able to model the existing multiparameter correlations by fitting the single parameter p. Specifically, p=1/3.25 for the correlation of Midoux et al., p=1/3.25 for the correlation of Rao et al., p=1/3.5 for the Tosun correlation, p=1/3.25 for the correlation of Larkins et al., p=1/3.75 for the correlation of Sato et al., and p=1/3.5 for the Goto and Gaspillo correlation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference40 articles.

1. A General Expression for the Correlation of Rates of Transfer and Other Phenomena;Churchill;Am. Inst. Chem. Eng. Symp. Ser.

2. Asymptotes and Asymptotic Analysis for Development of Compact Models for Microelectronic Cooling;Yovanovich

3. Correlations for Laminar Forced Convection With Uniform Heating in Flow Over a Plate and in Developing and Fully Developed Flow in a Tube;Churchill;ASME J. Heat Transfer

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3