3-D Stress Intensity Factors for Internal Cracks in an Overstrained Cylindrical Pressure Vessel—Part I: The Effect of Autofrettage Level

Author:

Perl M.1,Nachum A.1

Affiliation:

1. Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract

Three-dimensional, mode I, stress intensity factor (SIF) distributions for arrays of internal surface cracks emanating from the bore of an autofrettaged thick-walled cylinder are evaluated in Part I of this paper. The 3-D analysis is performed via the finite element (FE) method and the submodeling technique, employing singular elements along the crack front. The autofrettage residual stress field is simulated using an equivalent temperature field. More than 200 different crack configurations were analyzed. SIFs for numerous crack arrays (n=1–180 cracks), a wide range of crack-depth-to-wall-thickness ratios a/t=0.05-0.6, various ellipticities a/c=0.2-1.5, and different levels of autofrettage (e=10–100 percent) were evaluated. The results clearly indicate the importance of autofrettage in reducing the effective stress intensity factor, and thus, slowing the crack growth rate. The sensitivity of this favorable effect to the number of cracks in the array as well as to the level of autofrettage are also discussed. The combined effect of pressure and autofrettage is discussed in detail in Part II of this paper. [S0094-9930(00)00604-1]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3