Affiliation:
1. Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420-9108
Abstract
A contoured elastic-membrane microvalve is presented that enables integrated microfluidic processing at the network level. This method takes advantage of two ideas to improve performance: flexible elastic membranes (which enable high-performance shutoff and reduced footprint), and three-dimensionally contoured valve geometries (which reduce dead volume, improve fluidic priming, and reduce susceptibility to cavitation at high fluid velocities). We describe the use of laser-induced etching for microfluidic manifold fabrication, discuss the nonlinear load-deflection behavior of elastic membranes that can occur below 30 psi, and present flow-rate data for microvalves under inlet pressures of 0–20 psi with zero applied membrane pressure. Valve-closure data for inlet pressures of 0–30 psi are presented for fully assembled microvalve structures. The microvalve structures under test were capable of turning off flows of>20 μL/s. These flow rates were shown to be limited by inlet and outlet flow resistances and not by the valve structure itself, so that higher maximum flow rate capabilities should be readily achieved.
Subject
Physiology (medical),Biomedical Engineering
Reference13 articles.
1. Bloomstein T. M. , and EhrlichD. J., 1992a, “Stereo laser micromachining of silicon,” Appl. Phys. Lett., Vol. 61, No. 6, p. 708708.
2. Bloomstein T. M. , and EhrlichD. J., 1992b, “Laser-chemical three-dimensional writing for microelectromechanics and application to standard-cell microfluidics,” J. Vac. Set Technol. B, Vol. 10, No. 6, p. 26712671.
3. Bloomstein, T. M., 1996, “Laser microchemical etching of silicon,” Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.
4. Bousse, L., Dijkstra, E., and Guenat, O., 1996, “High-density arrays of valves and interconnects for liquid switching,” Technical Digest of the 1996 Solid-State Sensor and Actuator Workshop, p. 272.
5. Elwenspoek M. , LammerinkT. S. J., MiyakeR., and FluitmanJ. H. J., 1994, “Towards integrated microliquid handling systems,” J. Micromech. Microeng., Vol. 4, p. 227227.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献