Affiliation:
1. Intelligent Systems and Emotional Engineering Laboratory, Department of Mechatronics Engineering, Chungnam National University, Daejeon 34134, South Korea
Abstract
Abstract
The conventional scissor mechanism is used in modern engineering and robotic applications due to its metamorphic ability. The folding configuration provides space-saving and unfolding provides longer linear expansion capability. However, a conventional scissor suffers unexpected and uncontrolled large bending deformation due to low bending stiffness while unfolding configuration, which may damage its structure. It also has a sudden bending singularity during unfolding, which may also damage the actuator. These limitations impose a significant constraint on real-life applications such as foldable robot arms, space robot arms, and reconfigurable robots. In this paper, we proposed a multi-strands parallel twisted-scissor mechanism (PTSM) to enhance its usability. The PTSM is inspired by a rope structure and designed by introducing a metamorphic segment (MS) using the S-shaped linkage design approach to improve its bending stiffness without affecting conventional scissors’ fundamentals. The PTSM has a unique feature of several automatic-link locking mechanisms to avoid singularity without using additional sensors, mechanism, or control. We experimentally checked the proposed design’s functionality and its feasibility. We formulated a cantilever bending model for foldable PTSM with N metamorphic segments considering revolute joint clearance for bending estimation, experimentally verified, and analyzed the bending deformation in the X–Y and Y–Z planes. Also, it is compared with a conventional scissor. Finally, we found that PTSM is stronger than conventional scissor and can fold/unfold smoothly using a single linear actuator. PTSM can provide large linear displacement with small bending deformation without bending singularity.
Funder
National Research Foundation of Korea
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献