WraptMor: Confirmation of an Approach to Estimate Ligament Fiber Length and Reactions With Knee-Specific Morphology

Author:

Zaylor William1,Halloran Jason P.2

Affiliation:

1. Department of Mechanical Engineering, Cleveland State University, Cleveland OH 44115

2. Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, Washington, DC 99164

Abstract

Abstract Knee ligament length can be used to infer ligament recruitment during functional activities and subject-specific morphology affects the interplay between ligament recruitment and joint motion. This study presents an approach that estimated ligament fiber insertion-to-insertion lengths with wrapping around subject-specific osseous morphology (WraptMor). This represents an advancement over previous work that utilized surrogate geometry to approximate ligament interaction with bone surfaces. Additionally, the reactions each ligament imparted onto bones were calculated by assigning a force–length relationship (kinetic WraptMor model), which assumed that the insertion-to-insertion lengths were independent of the assigned properties. Confirmation of the approach included comparing WraptMor predicted insertion-to-insertion length and reactions with an equivalent displacement-controlled explicit finite element model. Both models evaluated 10 ligament bundles at 16 different joint positions, which were repeated for five different ligament prestrain values for a total of 80 simulations per bundle. The WraptMor and kinetic WraptMor models yielded length and reaction predictions that were similar to the equivalent finite element model. With a few exceptions, predicted ligament lengths and reactions agreed to within 0.1 mm and 2.0 N, respectively, across all tested joint positions and prestrain values. The primary source of discrepancy between the models appeared to be caused by artifacts in the finite element model. The result is a relatively efficient approach to estimate ligament lengths and reactions that include wrapping around knee-specific bone surfaces.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3