Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of Delaware, Newark, Del. 19711
Abstract
Numerical solutions for two-dimensional, steady, free convection are presented for a rectangular cavity with constant heat flux on one vertical wall, the other vertical wall being isothermally cooled. The horizontal walls are insulated. Results are presented in terms of streamlines and isotherms, local and average Nusselt numbers at the heated wall, and the local heat flux at the cooled wall. Flow patterns are observed to be quite different from those in the case of a cavity with both vertical walls at constant temperatures. Specifically, symmetry in the flow field is absent and any increase in applied heat flux is not accompanied by linearly proportional increase in the temperature on the heated wall. Also, for low Prandtl number, the heat transfer rate based upon the mean temperature difference is higher as compared to experimental results for the isothermal case. Heat transfer results, further, indicate that the average Nusselt number is correlated by a relation of the form Nu = constant Ra*mAn, where Ra* is the Rayleigh number and A the height-to-width ratio of the cavity.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献