Numerical Analysis of Laminar-Drag-Reducing Grooves

Author:

Mohammadi A.1,Floryan J. M.1

Affiliation:

1. Department of Mechanical and Materials Engineering, The University of Western Ontario, London ON N6A 5B9, Canada e-mail:

Abstract

The performance of grooves capable of reducing shear drag in laminar channel flow driven by a pressure gradient has been analyzed numerically. Only grooves with shapes that are easy to manufacture have been considered. Four classes of grooves have been studied: triangular grooves, trapezoidal grooves, rectangular grooves, and circular-segment grooves. Two types of groove placements have been considered: grooves that are cut into the surface (they can be created using material removal techniques) and grooves that are deposited on the surface (they can be created using material deposition techniques). It has been shown that the best performance is achieved when the grooves are aligned with the flow direction and are symmetric. For each class of grooves, there exists an optimal groove spacing, which results in the largest drag reduction. The largest drag reduction results from the use of trapezoidal grooves and the smallest results from the use of triangular grooves for the range of parameters considered in this work. Placing the same grooves on both walls increases the drag reduction by up to four times when comparing with grooves on one wall only. The predictions remain valid for any Reynolds number as long as the flow remains laminar.

Publisher

ASME International

Subject

Mechanical Engineering

Reference24 articles.

1. Mechanism of Drag Generation by Surface Corrugation;Phys. Fluids,2012

2. Drag and Heat-Transfer Characteristics of Small Longitudinally Ribbed Surfaces;AIAA J.,1979

3. Drag Characteristics of V-Groove and Transverse Curvature Riblets,1980

4. Riblets as a Viscous Drag Reduction Technique;AIAA J.,1983

5. Drag Reduction by Riblets;Philos. Trans. R. Soc. A,2011

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3