Affiliation:
1. Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052
2. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109
Abstract
A unified approach to topology and dimensional synthesis of compliant mechanisms is presented in this paper as a discrete optimization problem employing both discrete (topology) and continuous (size) variables. The synthesis scheme features a design parameterization method that treats load paths as discrete design variables to represent various topologies, thereby ensuring structural connectivity among the input, output, and ground supports. The load path synthesis approach overcomes certain design issues, such as “gray areas” and disconnected structures, inherent in previous design schemes. Additionally, multiple gradations of structural resolution and a variety of configurations can be generated without increasing the number of design variables. By treating topology synthesis as a discrete optimization problem, the synthesis approach is incorporated in a genetic algorithm to search for feasible topologies for single-input single-output compliant mechanisms. Two design examples, commonly seen in the compliant mechanisms literature, are included to illustrate the synthesis procedure and to benchmark the performance. The results show that the load path synthesis approach can effectively generate well-connected compliant mechanism designs that are free of gray areas.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献