Distributed Control of Two-Dimensional Navier–Stokes Equations in Fourier Spectral Simulations

Author:

Rahmani Behrooz1,Moosaie Amin2

Affiliation:

1. Control Research Laboratory, Department of Mechanical Engineering, Yasouj University, Yasouj 75914-353, Iran e-mail:

2. Turbulence Research Laboratory, Department of Mechanical Engineering, Yasouj University, Yasouj 75914-353, Iran

Abstract

A method for distributed control of nonlinear flow equations is proposed. In this method, first, Takagi–Sugeno (T–S) fuzzy model is used to substitute the nonlinear partial differential equations (PDEs) governing the system by a set of linear PDEs, such that their fuzzy composition exactly recovers the original nonlinear equations. This is done to alleviate the mode-interaction phenomenon occurring in spectral treatment of nonlinear equations. Then, each of the so-obtained linear equations is converted to a set of ordinary differential equations (ODEs) using the fast Fourier transform (FFT) technique. Thus, the combination of T–S method and FFT technique leads to a number of ODEs for each grid point. For the stabilization of the dynamics of each grid point, the use is made of the parallel distributed compensation (PDC) method. The stability of the proposed control method is proved using the second Lyapunov theorem for fuzzy systems. In order to solve the nonlinear flow equation, a combination of FFT and Runge–Kutta methodologies is implemented. Simulation studies show the performance of the proposed method, for example, the smaller settling time and overshoot and also its relatively robustness with respect to the measurement noises.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3