Experimental Characterization of Two-Phase Cold Plates Intended for High-Density Data Center Servers Using a Dielectric Fluid

Author:

Ramakrishnan Bharath1,Hoang Cong Hiep1,Khalili Sadegh1,Hadad Yaser1,Rangarajan Srikanth1,Pattamatta Arvind2,Sammakia Bahgat1

Affiliation:

1. Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902

2. Department of Mechanical Engineering, Indian Institute of Technology, Chennai 600036, India

Abstract

Abstract High-performance computing (HPC) data centers demand cutting edge cooling techniques like direct contact liquid cooling (DCLC) for safe and secure operation of their high-power density servers. The two-phase flow boiling heat transfer technique is widely believed to address the heating problem posed by HPC racks. In this study, a novel liquid-cooled cold plate containing microchannel and jet impingement arrangement was characterized for its two-phase flow and thermal behavior. A sophisticated bench top setup involving a mock package was developed to carry out the experiments in a controlled fashion using a dielectric fluid Novec/HFE-7000. Two-phase flow boiling in cold plates which has a strong dependency on surface phenomena were carefully studied at various levels of inlet pressure, subcooling, flow rates, and heat flux levels to the mock package. A resistance network was invoked to determine the average heat transfer coefficient at various exit qualities estimated by the energy balance equation. While the results make it evident that, the high heat generating components can be kept at operable conditions using the two-phase cooling; a deeper insight at the outcomes could pave way for more energy efficient cold plate designs. The experiment was carried out with a large heated surface of 6.45 cm2 and maximum dissipated heat flux was around 63.6 W/cm2 corresponding to chip power of 410 W. Base temperature was kept below 75 °C and pressure drop did not exceed 21 kPa.

Funder

National Science Foundation

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference45 articles.

1. Two Phase Cooling System;Carbon

2. Modeling of Boiling Flow in Microchannels for Nucleation Characteristics and Performance Optimization;Int. J. Heat Mass Transfer,2013

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3