Design, Construction and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig

Author:

Mushi Simon E.1,Lin Zongli1,Allaire Paul E.1

Affiliation:

1. University of Virginia, Charlottesville, VA

Abstract

The successful industrial application of flexible rotors supported on active magnetic bearings (AMBs) requires careful attention not only to rotordynamic design aspects, but also to electromagnetic and feedback control design aspects. This paper describes the design, construction and modeling process for an AMB test rig which contains a 1.23m long flexible steel rotor, with a mass of 44.9 kg and two gyroscopic disks. The rotor typifies a small industrial centrifugal compressor designed to operate above 12,000 rpm and the first bending natural frequency. There are four AMBs — two AMBs at the shaft ends to support the shaft with a combined load capacity of 2600N and two additional AMBs at the mid and quarter spans to allow for the application of simulated destabilizing fluid or electromagnetic forces to the rotor. Simulated aerodynamic cross coupling stiffness values are to be applied to the rotor through these two internal AMBs with the goal of developing stabilizing robust controllers. The unique design allows multiple support and disturbance locations providing the ability to represent a variety of machine configurations, e.g., between bearing and overhung designs. The shaft transfer function in lateral movement has been developed with finite element model and then verified by experimental frequency response measurements. Models for the power amplifiers, position sensors, signal conditioning and data converter hardware were developed, verified experimentally and included in the overall system model. A PID controller was developed and tuned to levitate the rotor and enable further system characterization.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and experimental verification of a flexible rotor/AMB system;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2013-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3