Combined Effect of Slot Injection, Effusion Array and Dilution Hole on the Heat Transfer Coefficient of a Real Combustor Liner: Part 2—Numerical Analysis

Author:

Andreini Antonio1,Ceccherini Alberto1,Facchini Bruno1,Coutandin Daniele2

Affiliation:

1. University of Florence, Firenze, Italy

2. Avio S.P.A, Rivalta di Torino, TO, Italy

Abstract

Due to the higher cooling requirements of novel combustor liners a comprehensive understanding of the phenomena concerning the interaction of hot gases with different coolant flows plays a major role in the definition of a well performing liner. A numerical study of a real engine cooling scheme was performed on a test article replicating a slot injection and an effusion array with a central large dilution hole. Geometry consists of a rectangular cross-section duct with a flat plate comprised 272 holes arranged in 29 staggered rows (d = 1.65 mm, Sx/d = 7.6, Sy/d = 6, L/d = 5.5, α = 30 deg); a dilution hole (D = 18.75 mm) is located at the 14th row. A detailed experimental survey has been performed on this test article making possible to compare both predicted adiabatic effectiveness and heat transfer coefficient. The study has a twofold objective. On one hand it aims to assess the accuracy of standard industrial CFD analysis in the prediction of heat transfer on the hot side of realistic effusion cooled plates, and, on the other hand, it allows to better understand the structure of flow field, not investigated with experiments. Steady state RANS calculations have been performed on 3D computational domain with a full explicit discretization of effusion holes, with a sensitivity to standard two-equation turbulence models. Numerical results have pointed out a large dependence on effusion velocity ratio and, despite the well known deficiency of eddy viscosity models in the prediction of film effectiveness, CFD results have shown an excellent agreement with experiments in the prediction of hot side heat transfer coefficient. The entity of local heat transfer augmentation due to gas-jets interaction and its dependence on jets velocity ratio were predicted with very satisfactory agreement. The increase of heat transfer is usually located very close to jet exits and it is mainly due to local flow acceleration and vortices whose calculation is not affected by the inaccurate jet mixing prediction of first order turbulence models. Besides the comparison with experimental data of the companion paper, an additional numerical investigation was performed to assess the effect of a variable density ratio. Obtained results point out the opportunity to scale the increase in heat transfer coefficient with effusion jets velocity ratio.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3