The Development of Long Last Stage Steam Turbine Blades

Author:

McBean Ivan1,Havakechian Said1,Masserey Pierre-Alain1

Affiliation:

1. Alstom Power, Baden, Switzerland

Abstract

In steam turbine power plants, the appropriate design of the last stage blades is critical in determining the plant efficiency and reliability and competitiveness. A high level of technical expertise combined with many years of operating experience are required for the improvement of last stage designs that increases performance, without sacrificing mechanical reliability. This paper focuses on three main development areas that are key for the development of last stage blades, namely the aerodynamic design, the mechanical design and the validation process. The three different lengths of last stage blade (LSB) were developed of 41in, 45in and 49in (and a number of scaled variants). The aerodynamic design process involves 3D CFD and flow path analysis, considerations such as last stage blade flutter and water droplet erosion, and last stage guide design. The mechanical design includes finite element stress and dynamic analysis, appropriate selection of the blade material, the coupling of the LSB with the rotor and the design of the LSB snubber and shroud. Experimental measurements form a key part of the product validation, from both the mechanical reliability and performance points of view.

Publisher

ASMEDC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis on strength performance of the last stage blade in steam turbine under low mass flow conditions;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-02-27

2. Development of last-stage long blades for steam turbines;Advances in Steam Turbines for Modern Power Plants;2022

3. Steam turbine rotor design and rotor dynamics analysis;Advances in Steam Turbines for Modern Power Plants;2022

4. Development of the Typical Design of the High-Pressure Stage of a Steam Turbine;Advances in Design, Simulation and Manufacturing III;2020

5. Development of last-stage long blades for steam turbines;Advances in Steam Turbines for Modern Power Plants;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3