Predictive Emissions Monitoring Using a Continuously Updating Neural Network

Author:

Vanderhaegen Evert1,Deneve Michae¨l1,Laget Hannes1,Faniel Nathalie1,Mertens Jan1

Affiliation:

1. Laborelec, Linkebeek, Belgium

Abstract

In the European Union, power plants of more than 50 MW (thermal energy) need to comply with the Large Combustion Plant Directive (LCPD, 2001) implying that flue gas emissions need to be measured continuously. Traditionally, emissions from power plants are measured using Automated Measuring Systems (AMS). The LCPD states that no more than 10 days of emission data may be lost within one year including days needed for maintenance. This is the reason why more and more power plants are currently installing a second, back-up AMS since they have problems with the availability of their AMS. Since early 1990’s, Predictive Emissions Monitoring Systems (PEMS) are being developed and accepted by some local authorities within Europe and the United States. PEMS are in contrast to AMS based on the prediction of gaseous emissions (most commonly NOx and CO) using plant operational data (eg. fuel properties, pressure, temperature, excess air, …) rather than the actual measurement of these emissions. The goal of this study is to develop a robust PEMS that can accurately predict the NOx and CO emissions across the entire normal working range of a gas turbine. Furthermore, the PEMS should require as little maintenance as possible. The study does not intend to replace the AMS by a PEMS but rather to use the PEMS as a backup for the AMS. Operational data of a gas turbine, acquired over a long period, was used to identify inputs with a high influence on the NOx and CO formation. Consequently, simulations were done testing different model structures and calibration methodologies. The study shows that a static model failed to predict the emissions accurately over long time periods. In contrast, a dynamic or self-adapting algorithm proved to be most efficient in predicting the emissions over a long time period with a minimum of required intervention and maintenance. The self-adapting algorithm uses measured AMS data to continuously update the neural network. Since the PEMS is developed as a backup for the AMS, these data are readily available. The study shows that in case of a failing AMS, the developed model could accurately predict the NOx emissions for a duration of several weeks. Although not discussed in detail in this study, a quality assurance system of the PEMS is also developed since the PEMS needs to comply to the EN14181 (as does any AMS). The PEMS as a backup of the AMS instead of a second AMS is cost and time saving. Not only is the purchase of a second AMS avoided (between 40 and 100 k€) but equally important and of the same order of magnitude are the cost and time savings with respect to the Quality Assurance of the second AMS.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3