Repair Process Technology Development and Experience for W501F Row 1 Hot Gas Path Blades

Author:

Miglietti Warren1,Summerside Ian1,Hoevel Simone2,Zainuddin Zaki2

Affiliation:

1. Power Systems Mfg., LLC, Jupiter, FL

2. Alstom, Baden, Switzerland

Abstract

Volatile market dynamics in the electrical power generation field continues to force power companies to identify prudent material cost reductions opportunities in their Operations and Maintenance (O&M) business. Today, there is an industry-recognized need for advanced hot gas path component repair and reconditioning capability for operators of F-Class gas turbines that can be highly cost effective with short cycle times. The SGT6-5000F (W501FD) engine, an “F” class machine has been in operation for more than a decade now. Of importance to operators/users and owners of this gas turbine engine is the ability to recondition the turbine “hot-end section” components, in order to support maintenance requirements. The first 2 rows of blades are unshrouded; whereas the last 2 rows are shrouded. The row 1 blades show severe degradation and thus repair of this component has been a focus point for PSM. The technical objective is to develop repair schemes for the row 1 blades since this component (other than the Transition Piece (TP)) has the highest frequency of replacement, plus is the highest replacement cost per component. Special processes have been developed for these components repairs, including but not limited to: a) Acid stripping of the coating; b) Machining off of the original brazed tip cap plates; c) High frequency gas tungsten arc welding and vacuum diffusion braze repair of platform cracks; d) High frequency gas tungsten arc weld attachment or laser welding of new tip cap plates; e) Laser metal forming/cladding of new squealer tips; f) Rejuvenation heat treatment; g) Application of superior MCrAlY and TBC coating to that originally applied. This technical paper describes the repair process development and implementation of the different stages of the repair schemes, and shows metallurgical and mechanical characteristics of the repaired regions of the component.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3