Dynamics of Non-Premixed Bluff Body-Stabilized Flames in Heated Air Flow

Author:

Cross Caleb1,Fricker Aimee1,Shcherbik Dmitriy1,Lubarsky Eugene1,Zinn Ben T.1,Lovett Jeffery A.2

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

2. Pratt & Whitney Aircraft Engines, East Hartford, CT

Abstract

This paper describes a study of the fundamental flame dynamic processes that control bluff body-stabilized combustion of liquid fuel with low dilatation. Specifically, flame oscillations due to asymmetric vortex shedding downstream of a bluff body (i.e., the Be´nard/von-Ka´rma´n vortex street) were characterized in an effort to identify the fundamental processes that most affect the intensity of these oscillations. For this purpose, the spatial and temporal distributions of the combustion process heat release were characterized over a range of inlet velocities, temperatures, and overall fuel-air ratios in a single flame holder combustion channel with full optical access to the flame. A stream of hot preheated air was supplied to the bluff body using a preburner, and Jet-A fuel was injected across the heated gas stream from discrete fuel injectors integrated within the bluff body. The relative amplitudes, frequencies, and phase of the sinusoidal flame oscillations were characterized by Fourier analysis of high-speed movies of the flame. The amplitudes of the flame oscillations were generally found to increase with global equivalence ratio, reaching a maximum just before rich blowout. Comparison of the flame dynamics to the time-averaged spatial heat release distribution revealed that the intensity of the vortex shedding decreased as a larger fraction of the combustion process heat release occurred in the shear layers surrounding the recirculation zone of the bluff body. Furthermore, a complete transition of the vortex shedding and consequent flame stabilization from asymmetric to symmetric modes was clearly observed when the inlet temperature was reduced from 850°C to 400°C (and hence, significantly increasing the flame dilatation ratio from Tb/Tu ∼ 2.3 to 3.7).

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3