Measurements of Endwall Flows in Transonic Linear Turbine Cascades: Part II—High Flow Turning

Author:

Taremi F.1,Sjolander S. A.1,Praisner T. J.2

Affiliation:

1. Carleton University, Ottawa, ON, Canada

2. Pratt and Whitney Aircraft, East Hartford, CT

Abstract

An experimental investigation of two low-turning (90°) transonic linear turbine cascades was presented in Part I of the paper. Part II examines two high-turning (112°) turbine cascades. The experimental results include total pressure losses, streamwise vorticity and secondary kinetic energy distributions. The measurements were made using a seven-hole pressure probe downstream of the cascades. In addition to the measurements, surface flow visualization was conducted to assist in the interpretation of the flow physics. The turbine cascades in Part II, referred to as SL1F and SL2F, have the same inlet and outlet design flow angles, but different aerodynamic loading levels: SL2F is more highly loaded than SL1F. The surface flow visualization results show evidence of small flow separation on the suction side of both airfoils. At the design conditions (outlet Mach number ≈ 0.8), SL2F exhibits stronger vortical structures and larger secondary velocities than SL1F. The two cascades, however, produce similar row losses based on the measurements at 40% axial chord lengths downstream of the trailing edge. Additional data were collected at off-design outlet Mach numbers of 0.65 and 0.91. As the Mach number is raised, the cascades become more aft-loaded. The absolute blade loadings increase, but the Zweifel coefficients decrease due to higher outlet dynamic pressures. Both profile and secondary losses decrease at higher Mach numbers; the main vortical structures and the corresponding peak losses migrate towards the endwall, and there are reductions in secondary kinetic energy and exit flow angle variations. The streamwise vorticity distributions show smaller peak vorticities associated with the passage and the counter vortices at higher exit Mach numbers. The corner vortex, on the other hand, becomes more intensified, resulting in reduction of flow overturning near the endwall. The results for SL1F and SL2F are compared and contrasted with the results for the lower turning cascades presented in Part I. The possible effects of suction-surface flow separation on profile and secondary losses are discussed in this context. The current research project is part of a larger study concerning the effects of endwall contouring on secondary losses, which will be presented in the near future.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3