Total Cooling Effectiveness on a Staggered Full-Coverage Film Cooling Plate With Impinging Jet

Author:

Jung Eui Yeop1,Lee Dong Hyun1,Oh Sang Hyun1,Kim Kyung Min1,Cho Hyung Hee1

Affiliation:

1. Yonsei University, Seoul, Korea

Abstract

In the present study, total cooling performance was experimentally investigated on a full-coverage film cooling plate with an impingement jet cooling array. The detailed temperature distributions on the film cooled surface were measured using an infra-red thermographic technique. The test plate was made of polycarbonate (k = 0.2 W/m·K) and an array jet impinged underneath the test plates. The measured cooling effectiveness is a combined result of film cooling on the surface and convective heat transfer by a jet impingement array underneath the test plate. The diameter (d) of both film cooling and impingement jet cooling holes was 5 mm. Both the streamwise and spanwise hole spacing-to-hole diameter ratios (p/d) were 3 on the film cooled plate and impingement nozzle plate. The inclination angles of the film cooling holes and impingement jet holes were 35° and 90°, respectively. The holes on each plate were arranged in a staggered pattern. The jet Reynolds number based on the hole diameter varied from 3,000 to 7,000 and the equivalent blowing rate (M) changed from 0.3 to 0.7. The combined cooling effectiveness was measured by changing the gap distance between the jet plate and the film cooling plate from 1 to 5 times the hole diameter. The staggered film cooling hole arrangement showed a higher film cooling effectiveness than the inline film cooling hole arrangement. As the blowing rate increased, the cooling effectiveness decreased on the front part of film cooling plate for a fixed height to diameter ratio (H/d). The effect of H/d on the total cooling effectiveness was not significant for the fixed blowing rate (M) in the tested range.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3