Effect of Recirculation Device on Performance of High Pressure Ratio Centrifugal Compressor

Author:

Tamaki Hideaki1

Affiliation:

1. IHI Corporation, Yokohama, Japan

Abstract

Centrifugal compressors used for turbochargers need to achieve a wide operating range. A recirculation device, which consists of a bleed slot, an upstream slot and an annular cavity connecting both slots, is often applied to them. The author developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, a recirculation device was applied, the benefits of its application ensuring. This paper discusses how the recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3D calculations. It is reported that the interaction between shock and tip leakage vortex is one of the primary causes of stall inception in the impeller. Analysis of shock and tip leakage flow behavior leads to an understanding of the basic mechanism of the enhancement of operating range by the recirculation device. Hence this study focuses on the effect of the recirculation devices on the shock and tip leakage flow. Steady 3D calculations were performed and the effect of the recirculation device was clarified. The bleed slot of the recirculation device works in a similar way to circumferential grooves applied to axial compressors. It reduces the blade loading in the impeller tip region. And hence the velocity of tip leakage flow exiting the bleed slot becomes lower compared with that without the recirculation device. The flow through the bleed slot impinges on the tip leakage flow originated upstream and blocks the extension of the tip leakage flow. It also deflects the trajectory of the tip leakage vortex. In addition to these effects, the bleed slot removes the fluid near the casing. The shock moves downstream due to the reduction of the blockage. All these effects induced by the recirculation device are considered to lead to the suppression of the extension of blockage and to contribute to the enhancement of the compressor operating range.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3