The Flow Field Within an Axial Flow Compressor at Extremely High Flow Coefficients

Author:

Gill A.1,von Backstro¨m T. W.1,Harms T. M.1

Affiliation:

1. University of Stellenbosch, Stellenbosch, South Africa

Abstract

This article describes an experimental investigation of the flow structures occurring in a three-stage axial flow compressor during fourth quadrant operation in the incompressible flow regime. In fourth quadrant operation, the flow coefficient exceeds the design value to such a degree that the pressure difference between the compressor inlet and outlet becomes negative, and the compressor acts as a badly designed turbine. The pressure rise characteristic curve thus extends into the fourth quadrant of the compressor map. A three stage axial flow compressor, with a mass flow rate of 2.7 kg/s and a pressure ratio of 1.022 was investigated. The design rotor tip Mach number is 0.2. Three operational points within the fourth quadrant were investigated, at flow coefficients of 0.665, 0.747 and 1.024. A five hole conical probe and a 50 μm diameter inclined hot film anemometer were used in this investigation. Radial traverses downstream of rotor rows and a time-dependent area traverse downstream of the first stage stator were performed. Three-dimensional steady-state and time-dependent numerical Navier-Stokes solutions for single blade passages in each blade row for each of the cases are compared with experimental work. Large wakes were observed downstream of all stator rows, as a result of significant flow separation on stator blades. The area fraction of the flow passage affected by the wakes increases as the flow coefficient increases. Flow through rotor blade-passages is heavily affected by the blade position relative to upstream stator wakes. Due to the effect of the stator wakes on downstream blading, time-dependent solutions using the nonlinear harmonic approximation were found to agree better with experimental results than steady-state solutions using mixing planes between blade rows.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotor work characteristics and loss generation mechanism of an axial flow compressor at windmill operation;Transactions of the JSME (in Japanese);2019

2. Numerical Simulation of a Mixed-flow Compressor under Windmill Conditions;TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN;2015

3. Flow Fields in an Axial Flow Compressor During Four-Quadrant Operation;Journal of Turbomachinery;2013-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3