Parametrical Investigation of Turbine Stages With Open Tip Clearance for the Purpose of Stage Efficiency Increase

Author:

Granovskiy Andrei1,Kostege Mikhail1,Lomakin Nikolay1

Affiliation:

1. Alstom Power, Moscow, Russia

Abstract

The aerodynamic loss due to tip leakage vortex of rotor blades represents a significant part of viscous losses in axial flow turbines. The mixing of leakage flow with the main rotor passage flow causes losses and reduces turbine stage efficiency. Many measures have been proposed to reduce the loss in the tip clearance area. In this paper the reduction of the tip clearance loss due to changes made to the blade tip section profile is presented. The blade tip profile was modified to decrease the pressure gradient between pressure surface and suction surface. This approach allows the reduction of tip leakage and tip vortex strength and consequently the reduction of tip clearance losses. A 3D Navier-Stokes solver with q-ω turbulence model is used to analyze the flow in the turbine with various tip section profiles. Test data of three single-stage experimental turbines have been used to validate analytical predictions: • Highly loaded turbine stage with a pressure ratio π0T = 3.2 and reaction degree ρmean = 0.5. • Two turbines with a pressure ratio π0T = 3.9. (One with high degree of reaction ρmean = 0.55; the other with low degree of reaction ρmean = 0.26). The numerical investigation of the influence of various tip section profiles on stage efficiency was carried out in the range of relative tip clearance 0.5%–2.4% with the objective of a decreasing the influence of the tip clearance on the stage efficiency.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3