Momentum and Thermal Boundary Layer Development on an Internally Cooled Turbine Vane

Author:

Dees Jason E.1,Bogard David G.1,Ledezma Gustavo A.2,Laskowski Gregory M.2,Tolpadi Anil K.3

Affiliation:

1. The University of Texas at Austin, Austin, Texas

2. GE Global Research Center, Niskayuna, NY

3. GE Energy, Schenectady, NY

Abstract

Recent advances in computing power have made conjugate heat transfer simulations of turbine components increasingly popular; however, limited experimental data exists with which to evaluate these simulations. The primary parameter used to evaluate simulations is often the external surface temperature distribution, or overall effectiveness. In this paper, the overlying momentum and thermal boundary layers at various streamwise positions around a conducting, internally cooled simulated turbine vane were measured under low (Tu = 0.5%) and high (Tu = 20%) freestream turbulence conditions. Furthermore, experimental results were compared to computational predictions. In regions were a favorable pressure gradient existed, the thermal boundary layer was found to be significantly thicker than the accompanying momentum boundary layer. Elevated freestream turbulence had the effect of thickening the thermal boundary layer much more effectively than the momentum boundary layer over the entire vane. This data is valuable in understanding the conjugate heat transfer effects on the vane as well as serving as a tool for computational code evaluation.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3