Identification and Prediction of Force Coefficients in a Five-Pad and Four-Pad Tilting Pad Bearing for Load-on-Pad and Load-Between-Pad Configurations

Author:

Delgado Adolfo1,Vannini Giuseppe2,Ertas Bugra1,Drexel Michael1,Naldi Lorenzo2

Affiliation:

1. GE Global Research Center, Niskayuna, NY

2. GE Oil & Gas, Florence, Italy

Abstract

This paper presents the identification of the rotordynamic force coefficients for a direct lubrication five-pad and four-pad tilting pad bearing. The bearing is 110 mm in diameter with an L/D of 0.4. The experiments include load-on-pad (LOP) and load-between-pad (LBP) configurations, with a 0.5 and 0.6 pivot offset, for rotor speeds ranging from 7500 rpm to 15000 rpm. The bearing force coefficients are identified from multiple frequency excitations (20 to 300 Hz) exerted on the bearing housing by a pair of hydraulic shakers, and are presented as a function of the excitation frequency, rotor speed, for a 300 kPa unit load. The experimental results also include temperatures at the trailing edge of three pads. The direct force coefficients, identified from curve-fits of the complex dynamic stiffness, are frequency independent if considering an added mass term much smaller than the test device modal mass. The force coefficients from the four-pad bearing load-between-pad configuration show similar coefficients in the loaded and orthogonal direction. On the other hand, as expected, the five-pad bearing load-on-pad shows larger coefficients (∼25%) in the loaded direction. The maximum pad temperature recorded for the 0.5 pivot offset configurations are up to 20° C higher than those associated to the 0.6 offset configuration. Results from a predictive code are within 50% of the experimental results for the direct stiffness coefficients and within 30% for the direct damping coefficients.

Publisher

ASMEDC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental verification of frequency effects in tilting pad journal bearing dynamic coefficients;Transactions of the JSME (in Japanese);2021

2. Characteristics of a Spherical Seat TPJB With Four Methods of Directed Lubrication—Part II: Rotordynamic Performance;Journal of Engineering for Gas Turbines and Power;2017-08-23

3. Introduction of advanced technologies for steam turbine bearings;Advances in Steam Turbines for Modern Power Plants;2017

4. Identification Dynamic Force Coefficients of a Five-Pad Tilting-Pad Journal Bearing;Proceedings of the 9th IFToMM International Conference on Rotor Dynamics;2015

5. A Test Rig for Evaluating Tilting-Pad Journal Bearing Characteristics;Proceedings of the 9th IFToMM International Conference on Rotor Dynamics;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3