Miniaturized Broadband Vibration Energy Harvester With Piecewise-Linear Asymmetric Restoring Force

Author:

Masuda Arata1,Zhao Feng1

Affiliation:

1. Kyoto Institute of Technology, Kyoto, Japan

Abstract

Abstract This paper presents a design study of a miniaturized broadband nonlinear vibration energy harvester (VEH) with piecewise-linear restoring force based on a mechanically-sprung resonator with stoppers. It is commonly recognized that a VEH based on a nonlinearly-sprung resonator can show broadband frequency characteristics while keeping its maximum power performance due to its bent resonance peak. The resonator to be investigated in this study consists of a magnet composite as a mass moving through an induction coil, two planar springs, and mechanical stoppers. The magnet composite is comprised of two repelling cylindrical magnets and a steel disk between them, all encapsulated in a thin stainless-steel cylinder. The planar springs with spiral-like shape are respectively connected to the both ends of the magnet composite so that they provide soft linear stiffness in a compact size. The mechanical stoppers installed to constrain the deformation of the spring give the resonator piecewise-linear hardening characteristics which effectively broaden the resonance band. In this study, the prototype VEH developed in the previous study is presented, and the gaps between the springs and stoppers are adjusted so that the resultant piecewise-linear restoring force shows symmetric or asymmetric property with respect to the equilibrium point. Experimental studies and analyses are carried out to examine the performance of the presented VEH in terms of the frequency response. The comparison of three different configurations of the stopper illustrates how the asymmetry in the bilinear restoring force affects the shape of the resonance peak. It is also suggested that the asymmetry may help the VEH operate in broader band by exploiting its ability of tailoring the resonance characteristics, which still needs further investigation.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and simulation of double-mass dynamic vibration absorber with residual vibration mode;Journal of Mechanical Science and Technology;2023-06

2. Technological Trends in Vibration Energy Harvesting;Journal of the Japan Society for Precision Engineering;2022-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3