A Dynamic Spar Numerical Model for Passive Shape Change

Author:

Calogero Joseph1,Frecker Mary1,Hasnain Zohaib2,Hubbard James E.2

Affiliation:

1. The Pennsylvania State University, University Park, PA

2. University of Maryland, Hampton, VA

Abstract

A three-dimensional constraint-driven numerical dynamic model of a flapping wing structure called the Dynamic Spar Numerical Model (DSNM) is introduced and implemented. The model currently includes a leading edge spar and a diagonal spar, attached to a body by revolute and spherical joints, respectively. The spars consist of a user-specified number of rigid links connected by compliant joints (CJs): spherical joints with distributed masses and three axis nonlinear torsional spring-dampers. The goal of this model is to quickly simulate mechanisms in a test platform to see how their CJ design properties and spatial distribution affect passive shape change and physical performance metrics. The results of this model can be used as a starting point for further refinement in compliant joint design for passive shape change. Previous research leading to and assumptions made for modeling CJ are presented. The constraints are established, followed by the formulation of a state model used in conjunction with a forward time integrator, and finally several example runs. Modeling the CJs as linear springs produces a nearly symmetric rotation angles through the flapping cycle, while bi-linear springs show the wing is able to flex more during upstroke than downstroke. Increasing damping ratio reduces high frequency oscillations during the flapping cycle and the number of cycles required to reach steady state. Coupling the spring stiffnesses allows an angle about one axis to induce an angle about another axis, where the magnitude is proportional to the coupling term. Modeling both the leading edge and diagonal spars show that the diagonal spar changes the kinematics of the leading edge spar verses only considering the leading edge spar, causing much larger axial rotations in the leading edge spar. The kinematics are very sensitive to CJ location, where moving the CJ toward the wing root causes a stronger response, and adding multiple CJs on the leading edge spar with a CJ on the diagonal spar allow the wing to deform with larger magnitude in all directions. Future work includes implementing a performance metric, experimental verification, applying loads to represent ambient and flight conditions, and using the model as an optimization tool for parameter and spatial optimization.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3