Shape Memory Alloy Actuated Vertical Deploy Air Dam: Part 1 — Performance Requirements and Design

Author:

Browne Alan L.1,Johnson Nancy L.1,Muhammad Hanif2,Brown Jeffrey3

Affiliation:

1. GM R&D Laboratories, Warren, MI

2. Engineering Technology Associates, Troy, MI

3. Dynalloy, Inc., Tustin, CA

Abstract

Airflow over/under/around a vehicle can affect many important aspects of vehicle performance including vehicle drag (and through this vehicle fuel economy) and cooling/heat exchange for the vehicle powertrain and A/C systems. The vast majority of known devices in current use to control airflow over/under/around the vehicle are of fixed geometry, location, orientation, and stiffness. The project whose performance requirements, design, and build phases are described in this paper was successful in developing an SMA actuator based approach to the on-demand reversible deployment of an air dam through vertical translation. Beyond feasibility, the initial bench top working models demonstrated an active materials based approach which would add little weight to the existing stationary system, and could potentially perform well in the harsh under vehicle environment due to a lack of exposed bearings and pivots. This demonstration showed that actuation speed, force, and cyclic stability all could meet the application requirements. The solution, a dual point balanced actuation approach based on shape memory alloy wires, uses straight linear actuation to produce a reversible height change of 50 mm. Key technical issues with regard to design remaining to be resolved given the harsh under vehicle environment are in most part related to improved system robustness, a prime example being mechanism sealing.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3