Electromechanical Characterization of Piezoelectric Shear Actuators

Author:

Malakooti Mohammad H.1,Sodano Henry A.1

Affiliation:

1. University of Florida, Gainesville, FL

Abstract

Piezoelectric materials exhibit electromechanical coupling which has led to their widespread application for sensors, actuators, and energy harvesters. These materials possess anisotropic behavior with the shear coefficient have the largest electromechanical coupling coefficient. However the shear mode is difficult to measure with existing techniques and thus has not been fully capitalized upon in recent devices. Better understanding of the full shear response with respect to the driving electric field would significantly help the design of optimized piezoelectric shear devices. Here a simple and low cost direct measurement method based on digital image correlation is developed to characterize the shear response of piezoelectric materials and its nonlinear behavior as a function of external field. The piezoelectric shear coefficient (d15) of a commercial shear plate actuator is investigated in both bipolar and unipolar electric fields. Two different nonlinearities and hysteresis behaviors of the actuators were observed, and the relation between the driving field amplitude and the corresponding d15 coefficient is determined. Moreover, the measured transverse displacement of the plate actuator in simple shear condition is validated through a laser interferometry technique.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3