Development of Multi-DOF Active Microvibration Emulator

Author:

Park Geeyong1,Lee Dae-Oen1,Han Jae-Hung1,Goo Nam Seo2

Affiliation:

1. KAIST, Daejeon, Korea

2. Konkuk University, Seoul, Korea

Abstract

Recently, some components and payload systems installed in satellites are exposed to various disturbance sources, such as the reaction wheel assembly, the control moment gyro, coolers, and others. Because there is low damping in space, the continuous microvibration causes the degradation of the performance of various payload systems. Therefore, the development of a practical isolation system that shields against microvibration are very important and the author is on the way to developing the microvibration isolation system for the improvement on the performance of the optical payload. In order to develop appropriate microvibration isolation device for a specific payload, it is necessary to understand vibration characteristics of the main disturbance sources; modeling and analysis of disturbance sources including reaction wheel assembly and control moment gyros have been studied by many researchers. However, there are practical difficulties to obtain and perform an experiment with real flight model (FM) reaction wheel assembly and control moment gyros because of expensive price and security reasons. Generally, the disturbance characteristics of a prototype of the reaction wheel assembly or control moment gyros are significantly different from those of FM ones even when the reaction wheel type, size and wheel speed are the same. Therefore, in order to facilitate the microvibration isolation experiment during the satellite development process, this paper proposes a microvibration emulator that could generate the real disturbance spectrums of FMs. Note that the disturbance profiles are quite complex, consisting of several higher harmonics, and also changing for varying operational wheel speeds. The disturbance characteristics of FMs are typically measured in advance. First an analytical model for the RWA is presented and the development procedure for the emulator is also described. The performance of the first prototype emulator is demonstrated.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3