Cellular Honeycomb-Like Structures With Internal Buckling and Viscous Elements for Simultaneous Load-Bearing and Dissipative Capability

Author:

Barbarino Silvestro1,Pontecorvo Michael E.1,Gandhi Farhan S.1

Affiliation:

1. Rennselaer Polytechnic Institute, Troy, NY

Abstract

Cellular structures with hexagonal unit cells show a high degree of flexibility in design. Based on the geometry of the unit cells, highly orthotropic structures, structures with negative Poisson’s ratios, structures with high strain capability in a particular direction, or other desirable characteristics may be designed. Much of the prior work on cellular structures is based on hexagonal honeycomb-like unit cells, without any inclusions. A companion paper to the current paper presented a vision of cellular honeycomb-like structures with diverse inclusions or internal features within the unit cells (such as contact elements resulting in stiffening behavior, buckling beams resulting in softening behavior, bi-stable elements producing negative stiffness or viscous dashpots producing dissipative behavior). That paper further went into details on linear springs as the most fundamental of inclusions. In the present paper, a buckling beam and viscous dashpots are used as inclusions in the basic pin-jointed rigid-walled hexagonal unit cell. The buckling beam provides the cell with a high initial stiffness and load carrying capability. At loads beyond the critical buckling load, the unit cell softens (while still retaining the ability to carry a “design” load), and undergoes large deformation under incremental load. The viscous dampers undergo a correspondingly large stroke resulting in high dissipative capability and loss factor under harmonic or transient disturbance beyond the design load. In the paper, an analysis and design study of the cell behavior with variation in unit cell geometric parameters, buckling beam parameters and viscous dashpot parameters is presented. The analytical results in the paper are validated against ANSYS Finite Element results. Further, a prototype unit cell with an aluminum internal buckling beam and viscous dashpots is fabricated and tested under static and dynamic loads in an Instron machine. Good correlation is observed between the tests, the FE results and the analytical simulations when accounting for the non-linear behavior of the viscous dashpot used in the tests.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiphase lattice metamaterials with enhanced mechanical performance;Smart Materials and Structures;2021-01-07

2. Design studies on cellular structures with pneumatic artificial muscle inclusions for modulus variation;Journal of Intelligent Material Systems and Structures;2015-09-10

3. Variable modulus cellular structures using pneumatic artificial muscles;SPIE Proceedings;2014-04-01

4. A Three-Dimensional Multi-Stable Unit Cell for Energy Dissipation;55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference;2014-01-10

5. A Novel Structural Element Combining Load Carrying and Energy Dissipation Capability;55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference;2014-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3