Data-Driven Modeling Techniques to Estimate Dispersion Relations of Structural Components

Author:

Malladi Vijaya V. N. Sriram1,Albakri Mohammad I.1,Tarazaga Pablo A.1,Gugercin Serkan1

Affiliation:

1. Virginia Polytechnic Institute and State University, Blacksburg, VA

Abstract

Dispersion relations describe the frequency-dependent nature of elastic waves propagating in structures. Experimental determination of dispersion relations of structural components, such as the floor of a building, can be a tedious task, due to material inhomogeneity, complex boundary conditions, and the physical dimensions of the structure under test. In this work, data-driven modeling techniques are utilized to reconstruct dispersion relations over a predetermined frequency range. The feasibility of this approach is demonstrated on a one-dimensional beam where an exact solution of the dispersion relations is attainable. Frequency response functions of the beam are obtained numerically over the frequency range of 0–50kHz. Data-driven dynamical model, constructed by the vector fitting approach, is then deployed to develop a state-space model based on the simulated frequency response functions at 16 locations along the beam. This model is then utilized to construct dispersion relations of the structure through a series of numerical simulations. The techniques discussed in this paper are especially beneficial to such scenarios where it is neither possible to find analytical solutions to wave equations, nor it is feasible to measure dispersion curves experimentally. In the present work, actual experimental data is left for future work, but the complete framework is presented here.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Data-Driven Approach to the Impedance Matched Multi-Axis Test Method;Special Topics in Structural Dynamics & Experimental Techniques, Volume 5;2020-09-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3