Characterization of Creases in Polymers for Adaptive Origami Structures

Author:

Abbott Andrew C.123,Buskohl Philip R.12,Joo James J.4,Reich Gregory W.4,Vaia Richard A.2

Affiliation:

1. UES Inc., Dayton, OH

2. Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH

3. University of Dayton, Dayton, OH

4. Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson AFB, OH

Abstract

Techniques employed in origami are of interest for the design of actuating structures with multiple defined geometric states. Most research in this area has focused on manipulating material chemistry or geometry to achieve folding, but crease development through full material thickness has not been studied in detail. Understanding creasing is crucial for establishing material selection guidelines in origami engineering applications. Identification of the precise failure mechanisms is critical for understanding the residual fold angle and selecting optimal materials for specific origami applications. To characterize crease formation and development, polymer films were folded using a modified parallel plate bending technique which was successfully modeled with Euler beam theory in the elastic regime. Fold angles measured after creasing provided a means to quantitatively describe a material’s ability to retain a fold, and degree of plastic deformation incurred during folding. SEM micrographs of creased regions revealed tensile deformations on exterior crease surfaces while compressive deformations such as wrinkling occurred inside. Profilometry was performed on crease interiors to identify and measure wrinkle topology. It was found that increased dissipative plastic deformation led to retention of smaller fold angles. These characterization techniques can be used as a means of classifying and organizing polymers by potential usefulness in structural origami applications.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3