Flow Behavior and Heat Transfer Characteristics Between Outer and Slotted Inner Cylinders

Author:

Yuasa Tomohisa1,Kaneko Akiko1,Abe Yutaka1

Affiliation:

1. Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan

Abstract

Abstract The performance of air-cooled generators can be improved only if they have efficient system designs for heat removal. An air-cooled generator is composed of a pair of coaxial cylinders, namely, a fixed outer cylinder (stator) and a rotating inner cylinder (rotor); the rotor has axial slits. In this study, we experimentally and numerically clarified the flow behavior and the heat transfer characteristics of rotating coaxial cylinders by simulating a salient-pole rotor in an air-cooled generator. The flow behavior in the slit between the salient poles was observed by using a high-speed video camera. We measured the temperature on the slit walls to investigate the heat transfer. The velocity fields and the heat transfer coefficient between the rotor and the stator were obtained via a numerical simulation. From the results, we experimentally and numerically observed the vortex structure in the slit. The local Nusselt numbers on the front-side wall of the slits near the impinging flow were higher than those on the back-side wall near the separated flow. The local Nusselt numbers on the front-side wall were high because the gap flow between the cylinders impinged on the front-side wall and promoted heat transfer. By contrast, the local Nusselt numbers on the back-side wall were low because a separated flow appeared near the back-side wall, where the hot fluid was retained, thereby causing the separated flow to disturb the heat transfer on the back-side wall.

Funder

Japan Society for the Promotion of Science

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3