NBLSTM: Noisy and Hybrid Convolutional Neural Network and BLSTM-Based Deep Architecture for Remaining Useful Life Estimation

Author:

Al-Dulaimi Ali1,Zabihi Soheil1,Asif Amir1,Mohammed Arash2

Affiliation:

1. Electrical and Computer Engineering, Concordia University, 1455 De Maisonneuve Boulevard West, Montreal, QC, H3G-1M8, Canada

2. Concordia Institute for Information Systems Engineering, Concordia University, 1455 De Maisonneuve Boulevard West, Montreal, QC, H3G-1M8, Canada

Abstract

Abstract Smart manufacturing and industrial Internet of things (IoT) have transformed the maintenance management concept from the conventional perspective of being reactive to being predictive. Recent advancements in this regard has resulted in development of effective prognostic health management (PHM) frameworks, which coupled with deep learning architectures have produced sophisticated techniques for remaining useful life (RUL) estimation. Accurately predicting the RUL significantly empowers the decision-making process and allows deployment of advanced maintenance strategies to improve the overall outcome in a timely fashion. In light of this, the paper proposes a novel noisy deep learning architecture consisting of multiple models designed in parallel, referred to as noisy and hybrid deep architecture for remaining useful life estimation (NBLSTM). The proposed NBLSTM is designed by integration of two parallel noisy deep architectures, i.e., a noisy convolutional neural network (CNN) to extract spatial features and a noisy bidirectional long short-term memory (BLSTM) to extract temporal information learning the dependencies of input data in both forward and backward directions. The two paths are connected through a fusion center consisting of fully connected multilayers, which combines their outputs and forms the target predicted RUL. To improve the robustness of the model, the NBLSTM is trained based on noisy input signals leading to significantly robust and enhanced generalization behavior. Through 100 Monte Carlo simulation runs performed under three different signal-to-noise ratio (SNR) values, it can be noted that utilization of the noisy training enhanced the results by reducing the standard deviation (std) between 9% and 67% across different settings in terms of the root-mean-square error (RMSE) and between 21% and 63% in terms of the score value. The proposed NBLSTM model is evaluated and tested based on the commercial modular aero-propulsion system simulation (C-MAPSS) dataset provided by NASA, illustrating state-of-the-art results in comparison with its counterparts.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3