Gas Turbines Above 150 MW for Integrated Coal Gasification Combined Cycles (IGCC)

Author:

Becker B.1,Schetter B.1

Affiliation:

1. Siemens AG, KWU Group, Gas Turbine Technology, Mu¨lheim a.d. Ruhr, Federal Republic of Germany

Abstract

Commercial IGCC power plants need gas turbines with high efficiency and high power output in order to reduce specific installation costs and fuel consumption. Therefore the well-proven 154 MW V94.2 and the new 211 MW V94.3 high-temperature gas turbines are well suited for this kind of application. A high degree of integration of the gas turbine, steam turbine, oxygen production, gasifier, and raw gas heat recovery improves the cycle efficiency. The air use for oxygen production is taken from the gas turbine compressor. The N2 fraction is recompressed and mixed with the cleaned gas prior to combustion. Both features require modifications of the gas turbine casing and the burners. Newly designed burners using the coal gas with its very low heating value and a mixture of natural gas and steam as a second fuel are developed for low NOx and CO emissions. These special design features are described and burner test results presented.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical investigation of non-uniform flow in twin-silo combustors and impact on axial turbine stage performance;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2021-02-09

2. Gasification of Solid Waste;JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES;2019-04-23

3. USE OF SUGARCANE BAGASSE ASH AS A PARTIAL REPLACEMENT OF CEMENT IN CONCRETE;JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES;2019-04-23

4. Gasification of Municipal Solid Waste;Gasification for Low-grade Feedstock;2018-07-11

5. Gas Turbine Combustion and Ammonia Removal Technology of Gasified Fuels;Energies;2010-03-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3