Analytical Models for Predicting the Nonlinear Stress–Strain Relationships and Behaviors of Two-Dimensional Carbon Materials

Author:

Xiong Zixin1,Zhang Teng2,Li Xiaoyan1

Affiliation:

1. Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

2. Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244

Abstract

Abstract Due to having a single atom layer, two-dimensional (2D) materials represented by graphene monolayers exhibit unique and excellent mechanical properties, such as ultrahigh moduli and strengths. A large number of experiments and atomistic simulations have demonstrated nonlinear stress–strain responses. However, there is no theoretical model that analytically describes the relationships between nonlinear mechanical properties and interatomic interaction parameters of 2D materials. Here, we developed a nonlinear stick-spiral model for four typical 2D materials (including graphene, γ-graphyne, β-graphyne, and hexagonal boron nitride) based on a molecular mechanics model. By using the perturbation method, we derived a series of analytical expressions for nonlinear stress–strain relationships and elastic constants of these 2D materials under uniaxial tension along the zigzag and armchair directions. Our analytic models indicated that both Young’s moduli and Poisson’s ratios of these 2D materials are isotropic and dominate the linear elastic deformation, while their third-order moduli are orientation-dependent and essentially characterize the nonlinear stress–strain responses. The nonlinear stress–strain relationships, elastic constants, and atomic behaviors (such as bond elongation and bond angle variation during deformation) predicted from our analytical models are in good agreement with those from atomistic simulations and previous experiments. Our analytical models further demonstrated that the mechanical properties and behaviors of 2D materials are linked with their bonding and atomic structures (from a quantitative perspective) and are mainly determined by stiffnesses for bond stretching, angle variation, and bond lengths. Our current study provides an effective and accurate analytical approach for investigating the nonlinear behaviors of 2D materials.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastic constants of graphane, graphyne, and graphdiyne;Computational Materials Science;2024-09

2. New 2D Structures: Graphynes Under Tension;Mechanics of Solids;2024-02

3. Liquid Droplet Stamp Transfer Printing;Advanced Functional Materials;2021-09-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3