Double Curvature Bending of Variable-Arc-Length Elasticas

Author:

Chucheepsakul S.1,Wang C. M.2,He X. Q.3,Monprapussorn T.1

Affiliation:

1. Department of Civil Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

2. Department of Civil Engineering, The National University of Singapore, Kent Ridge 119260, Singapore

3. Department of Mechanical and Production Engineering, The National University of Singapore, Kent Ridge 119260, Singapore

Abstract

This paper deals with the double curvature bending of variable arc-length elasticas under two applied moments at fixed support locations. One end of the elastica is held while the other end portion of the elastica may slide freely on a frictionless support at a prescribed distance from the held end. Thus, the variable deformed length of the elastica between the end support and the frictionless support depends on the relative magnitude of the applied moments. To solve this difficult and highly nonlinear problem, two approaches have been used. In the first approach, the elliptic integrals are formulated based on the governing nonlinear equation of the problem. The pertinent equations obtained from applying the boundary conditions are then solved iteratively for solution. In the second approach, the shooting-optimization method is employed in which the set of governing differential equations is numerically integrated using the Runge-Kutta algorithm and the error norm of the terminal boundary conditions is minimized using a direct optimization technique. Both methods furnish almost the same stable and unstable equilibrium solutions. An interesting feature of this kind of bending problem is that the elastica can form a single loop or snap-back bending for some cases of the unstable equilibrium configuration.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3