Bifurcation and Chaotic Analysis of Aeroelastic Systems

Author:

Wang Cheng-Chi1,Chen Chieh-Li2,Yau Her-Terng3

Affiliation:

1. Graduate Institute of Precision Manufacturing, National Chin-Yi University of Technology, No.57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan

2. Department of Aeronautic and Astronautics, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan

3. Department of Electrical Engineering, National Chin-Yi University of Technology, No.57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan

Abstract

The dynamic behavior of aeroelastic systems is governed by a complex interaction among inertial, elastic, and aerodynamic forces. To prevent system instability, the interaction among these forces must be properly understood. Accordingly, the present study utilizes the differential transformation method (DTM) to examine the nonlinear dynamic response of a typical aeroelastic system (an aircraft wing) under realistic operating parameters. The system behavior and onset of chaos are interpreted by means of bifurcation diagrams, Poincaré maps, power spectra, and maximum Lyapunov exponent plots. The results reveal the existence of a complex dynamic behavior comprising periodic, quasi-periodic and chaotic responses. It is shown that chaotic motion occurs at specific intervals for different trailing edge and leading edge angles with changing initial conditions. The results presented in this study provide a useful guideline for the design of aircraft wings and confirm the validity of the DTM method as a design and analysis tool for aeroelastic systems in general.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3