Affiliation:
1. Columbia Nanomechanics Research Center, Department of Mechanical Engineering, Columbia University, New York, NY 10027
Abstract
Nanocomposite thin films which consist of 50nmAl2O3 nanoparticles in a copper metal matrix were deposited on a silicon wafer. The thickness of the nanocomposite thin films was about 3microns and the volume density of the nanoparticles was between 3% and 5%. The films were synthesized using electrocodeposition. The grain size of the nanocomposite film was significantly smaller than the grain size of control films of pure copper. Electron backscatter diffraction (EBSD) experiments indicate that neither the nanocomposite thin films nor the control films exhibits a crystallographic texture. Nanoindentation experiments show that the hardness of the nanocomposite thin film is approximately 25% higher than the hardness of the control films of pure copper. A prototype of a microchannel array in the nanocomposite thin film was made using standard microelectromechanical (MEMS) fabrication technology. It is expected that the enhanced mechanical properties exhibited by nanocomposite thin films have the potential to improve the reliability of various MEMS devices which rely on thin metal films. The results presented herein lay the groundwork for future studies in which the size, volume density, morphology, distribution as well as type of nanoparticle in the nanocomposite will be systematically and independently varied in order to optimize mechanical properties.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献