Structure and Properties of Electrocodeposited Cu-Al2O3 Nanocomposite Thin Films

Author:

Gan Yong1,Lee Dongyun1,Chen Xi1,Kysar Jeffrey W.1

Affiliation:

1. Columbia Nanomechanics Research Center, Department of Mechanical Engineering, Columbia University, New York, NY 10027

Abstract

Nanocomposite thin films which consist of 50nmAl2O3 nanoparticles in a copper metal matrix were deposited on a silicon wafer. The thickness of the nanocomposite thin films was about 3microns and the volume density of the nanoparticles was between 3% and 5%. The films were synthesized using electrocodeposition. The grain size of the nanocomposite film was significantly smaller than the grain size of control films of pure copper. Electron backscatter diffraction (EBSD) experiments indicate that neither the nanocomposite thin films nor the control films exhibits a crystallographic texture. Nanoindentation experiments show that the hardness of the nanocomposite thin film is approximately 25% higher than the hardness of the control films of pure copper. A prototype of a microchannel array in the nanocomposite thin film was made using standard microelectromechanical (MEMS) fabrication technology. It is expected that the enhanced mechanical properties exhibited by nanocomposite thin films have the potential to improve the reliability of various MEMS devices which rely on thin metal films. The results presented herein lay the groundwork for future studies in which the size, volume density, morphology, distribution as well as type of nanoparticle in the nanocomposite will be systematically and independently varied in order to optimize mechanical properties.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3