Heat Transfer From Plasma in Tube Flow

Author:

Schmidt P. S.1,Leppert G.2

Affiliation:

1. University of Texas at Austin, Austin, Texas

2. Mechanical Engineering Department, Clarkson College of Technology, Potsdam, N. Y.

Abstract

Heat transfer data are reported for partially ionized argon flowing in a water-cooled circular tube, 1/2 in. in dia. Experiments were run with initial mixed-mean temperatures up to 21,000 deg R at Reynolds numbers from 140–527 based on equilibrium properties evaluated at the entrance mixed-mean temperature. Measured plasma flow Nusselt numbers computed on an enthalpy basis correlate well with low temperature, constant property results after the first 5–10 diameters of the tube entrance region; closer to the entrance, Nusselt numbers were about 30 percent higher than constant property entrance region predictions. The tendency of the data to approach the constant property solution rapidly was predicted by a laminar finite-difference analysis for plasma flow published earlier [1]. The analysis was modified for the present study to improve its accuracy. The finite-difference theory under predicts the heat transfer in the first few tube diameters; two possible reasons for this discrepancy are the poor resolution in the inlet enthalpy profiles near the tube wall and nonequilibrium between electrons and heavy particles in this region.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3