Boundary Additive Effect on Abrasive Wear During Single Asperity Plowing of a 3004 Aluminum Alloy

Author:

Opalka Susanne M.1,Hector Louis G.1,Schmid Steven R.2,Reich Ronald A.1,Epp June M.1

Affiliation:

1. Tribology and Surface Evolution Technology Center, ALCOA Technical Center, ALCOA Center, PA

2. Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame IN

Abstract

Aluminum forming processes such as rolling, extrusion, and ironing involve the transfer of large loads through a tooling/workpiece interface to plastically deform the workpiece to a desired shape. Sharp tool surface asperities can plow the workpiece and lead to elevated friction and temperatures in the interface with a subsequent increase in abrasive wear debris which in turn degrades the surface aesthetics of the final product. To minimize associated friction and wear levels in aluminum forming processes, a base oil with one or more boundary additives is used as a lubricant. At the present time, however, little is known about the mechanisms by which a given additive influences abrasive wear in an aluminum metal forming interface. In the present work, a series of single asperity plowing experiments on a 3004-O aluminum alloy with selected lubricant components was conducted. Three additives were separately investigated, viz., stearic acid, butyl stearate, and lauryl alcohol. The plowing motion of a pyramidal diamond indentor with a cutting edge oriented in the plowing direction (i.e., a sharp indentor) was controlled with the piezo-electric transducers of an atomic force microscope. The experiments help to provide insight about the interplay between additive reaction with the surface and plowing mechanics. Further insight into this interplay and abrasive wear debris generation was sought, albeit qualitatively, through additional experiments involving a diamond indentor for which no one cutting edge was oriented in the plowing direction (i.e., a blunt indentor). The tests allowed evaluation of the boundary lubricant mechanism and propensity for generating wear debris.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sheet Metalworking;Schey’s Tribology in Metalworking;2023-09-30

2. Measurement Techniques;Schey’s Tribology in Metalworking;2023-09-30

3. Theory of Lubrication;Schey’s Tribology in Metalworking;2023-09-30

4. Developments in Tribology of Manufacturing Processes;Journal of Manufacturing Science and Engineering;2020-08-11

5. Ab-Initio Modeling of Lubricant Reactions with a Metal Al (111) Surface;Lubrication - Tribology, Lubricants and Additives;2018-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3