Adsorption-Induced Surface Effects on the Dynamical Characteristics of Micromechanical Resonant Sensors for In Situ Real-Time Detection

Author:

Hu Kai-Ming1,Zhang Wen-Ming2,Shi Xi2,Yan Han2,Peng Zhi-Ke2,Meng Guang2

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720 e-mail:

2. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

By incorporating modified Langmuir kinetic model, a novel slowly time-varying dynamical model of in situ micromechanical sensors is proposed to real-time monitor atomic or molecular adsorptions on the solid surface in a viscous fluid. First, Langmuir kinetic model is modified by the introduction of time-varying concentrations of analytes. Second, van der Waals (vdW), Coulomb, and biomolecular interactions for uncharged adsorbates, charged ones, and double-stranded DNAs (dsDNAs) are adopted, respectively, to develop the governing equation of time-varying vibrational systems with Hamilton's principle. It can be found that the adsorption-induced surface effects are incorporated into the dynamical equation of sensors due to real-time adsorptions. Third, the dynamical model is validated with the theoretical results of O atoms on Si (100) surface and the experimental data of dsDNAs interactions. The results show that the dynamical behavior is adsorption-induced slowly time-varying vibration due to the time-varying effective mass, stiffness, damping, and equilibrium positions of the microcantilevers. Moreover, comparing the modified Langmuir kinetic model with the unmodified model, the amplitude and phase hysteresis phenomena of frequency shift for resonant sensors can result in huge detection errors. In addition, the fluid effect can dramatically degrade the sensitivity and precision of real-time detection by several orders, which can provide a theoretical foundation to improve the detection sensitivity by reducing the fluid effect. The work demonstrates that it is essential to develop a time-varying dynamical model for in situ real-time label-free detection technique.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3