Hydrodynamic and Thermal Characteristics of Laminar Slip Flow Over a Horizontal Isothermal Flat Plate

Author:

Lahjomri Jawad1,Oubarra Abdelaziz2

Affiliation:

1. e-mail:

2. Laboratory of Mechanics, Faculty of Science Ain Chock, Hassan II University, B.P. 5366, Maarif, Casablanca, 20100, Morocco

Abstract

In this paper, hydrodynamic and thermal characteristics of laminar incompressible slip flow over an isothermal semi-infinite flat plate at a relatively low Mach number are considered and revised. The nonsimilar and local similarity solutions of the boundary layer equations with velocity-slip and temperature-jump boundary conditions are obtained numerically for the gaseous slip flow. The numerical calculations are made by assuming no thermal jump for the liquid flow. In addition, the approximate analytical solution of the boundary layer equations for high slip parameter is presented. Results from nonsimilar solution, local similarity approach, and approximate analytical solution are compared. We show that the local similarity approach used by several authors in the last decades produces substantial errors in hydrodynamic and thermal characteristics of the flow. Furthermore, accurate correlations of these characteristics are proposed for gaseous and liquid slip flows. The results of nonsimilar solution show, unlike the previous studies, that the overall skin friction coefficient presents a very slight decrease (indistinguishable) in the interval of the slip flow regime, whereas it decreases significantly as the flow becomes more rarefied. Moreover, with increasing slip condition, the results of overall Nusselt number, for gaseous flow, show that the heat transfer at the plate decreases slightly in the interval of slip flow regime while it increases in the case of liquids flow. This study confirms that for the accurate prediction of characteristics of slip flow, the slip parameter must be treated as a variable rather than a constant in the boundary layer.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference26 articles.

1. Blasius Boundary Layer Solution With Slip Flow Conditions,2001

2. Slip Flow Past a Stretching Surface;Acta Mech.,2002

3. A Moving-Wall Boundary Layer Flow of a Slightly Rarefied Gas Free Stream Over a Moving Flat Plate;Appl. Math. Lett.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3