Multiphase Finite Element Modeling of Machining Unidirectional Composites: Prediction of Debonding and Fiber Damage

Author:

Dandekar Chinmaya R.1,Shin Yung C.1

Affiliation:

1. Center for Laser-Based Manufacturing, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

A multiphase finite element model using the commercial finite element package ABAQUS/EXPLICIT is developed for simulating the orthogonal machining of unidirectional fiber reinforced composite materials. The composite materials considered for this study are a glass fiber reinforced epoxy and a tube formed carbon fiber reinforced epoxy. The effects of varying the fiber orientation angle and tool rake angle on the cutting force and damage during machining are considered for the glass fiber reinforced epoxy. In the case of carbon fiber reinforced epoxy, only the effect of fiber orientation on the measured cutting force and damage during machining is considered. Two major damage phenomena are predicted: debonding at the fiber-matrix interface and fiber pullout. In the multiphase approach, the fiber and matrix are modeled as continuum elements with isotropic properties separated by an interfacial layer, while the tool is modeled as a rigid body. The cohesive zone modeling approach is used for the interfacial layer to simulate the extent of debonding below the work surface. Bulk deformation and shear failure are considered in the matrix for both the models and the glass fiber. A brittle failure criterion is used for the carbon fiber specimen and is coded in FORTRAN as a user defined material (VUMAT). The brittle failure of the carbon fibers is modeled using the Marigo model for brittle failure. For validation purposes, simulation results of the multiphase approach are compared with experimental measurements of the cutting force and damage. The model is successful in predicting cutting forces and damage at the front and rear faces with respect to the fiber orientation. A successful prediction of fiber pullout is also demonstrated in this paper.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3