Antiplane Shear Deformations for Homogeneous and Inhomogeneous Anisotropic Linearly Elastic Solids

Author:

Horgan C. O.1,Miller K. L.1

Affiliation:

1. Department of Applied Mathematics, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22903

Abstract

Antiplane shear deformations of a cylindrical body, with a single displacement field parallel to the generators of the cylinder and independent of the axial coordinate, are one of the simplest classes of deformations that solids can undergo. They may be viewed as complementary to the more familiar plane deformations. Antiplane (or longitudinal) shear deformations have been the subject of the considerable recent interest in nonlinear elasticity theory for homogeneous isotropic solids. In contrast, for the linear theory of isotropic elasticity, such deformations are usually not extensively discussed. The purpose of the present paper is to demonstrate that for inhomogeneous anisotropic linearly elastic solids the antiplane shear problem does provide a particularly tractable and illuminating setting within which effects of anisotropy and inhomogeneity may be examined. We consider infinitesimal antiplane shear deformations of an inhomogeneous anisotropic linearly elastic cylinder subject to prescribed surface tractions on its lateral boundary whose only nonzero component is axial and which does not vary in the axial direction. In the absence of body forces, not all arbitrary anisotropic cylinders will sustain an antiplane shear deformation under such tractions. Necessary and sufficient conditions on the elastic moduli are obtained which do allow an antiplane shear. The resulting boundary value problems governing the axial displacement are formulated. The most general elastic symmetry consistent with an antiplane shear is described. There are at most 15 independent elastic coefficients associated with such a material. In general, there is a normal axial stress present, which can be written as a linear combination of the two dominant shear stresses. For a material with the cylindrical cross-section a plane of elastic symmetry (monoclinic, with 13 moduli), the normal stress is no longer present. For homogeneous materials, it is shown how the governing boundary value problem can be transformed to an equivalent isotropic problem for a transformed cross-sectional domain. Applications to the issue of assessing the influence of anisotropy and inhomogeneity on the decay of Saint-Venant end effects are described.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3