Affiliation:
1. Department of Marine Engineering, National Taiwan Ocean University, Keelung 202, Taiwan e-mail:
Abstract
In this paper, a gain-scheduled controller design method is proposed for linear parameter varying (LPV) stochastic systems subject to H∞ performance constraint. Applying the stochastic differential equation, the stochastic behaviors of system are described via multiplicative noise terms. Employing the gain-scheduled design technique, the stabilization problem of LPV stochastic systems is discussed. Besides, the H∞ attenuation performance is employed to constrain the effect of external disturbance. Based on the Lyapunov function and Itô's formula, the sufficient conditions are derived to propose the stability criteria for LPV stochastic systems. The derived sufficient conditions are converted into linear matrix inequality (LMI) problems that can be solved by using convex optimization algorithm. Through solving these conditions, the gain-scheduled controller can be obtained to guarantee asymptotical stability and H∞ performance of LPV stochastic systems. Finally, numerical examples are provided to demonstrate the applications and effectiveness of the proposed controller design method.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献